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The semi-empirical free electron theory with inclusion of interelectronic and electron-nuclear
molecular integrals is used to examine the spectroscopic properties of the trans-polyenes. The molecular
integrals were calculated at many values of Q, the free electron theory length parameter. Comparisons
are made to equivalent LCAO-MO methods, especially in regard to molecular coulomb and exchange
integrals, singlet-triplet separations and parametric dependence. The FET virial theorem is examined.

Mit der semiempirischen Elektronengasmethode unter EinschluB von Elektronen-Kern- und
Zweielektronen-Wechselwirkungsgliedern werden die Anregungsenergien der Polyene untersucht.
Die MO-Integrale werden fiir verschiedene Lingen Q des Elektronengases bestimmt und mit den
entsprechenden Grofien der MO-LCAO-Methode verglichen, ebenso auch die Singulett-Triplett-
Aufspaltungen und die Parameterabhéngigkeiten. Das Virialtheorem wird untersucht.

Les trans-polyenes sont étudiés par la théorie de I¢électron libre semi-empirique avec introduction
des intégrales moléculaires interélectroniques et électron noyau. Les intégrales moléculaires ont été
calculées pour de nombreuses valeurs de @, le paramétre de longueur de la théorie de 1’électron libre.
Des comparaisons sont faites avec les méthodes LCAO MO équivalentes, en particulier en ce qui
concerne les intégrales coulombiennes et d’échange, les séparations singulet-triplet et le réle des
paramétres. Le théoréme du viriel de la théorie de I’électron libre est examiné.

Introduction

The gualitative ideas of the free electron theory (FET) undoubtedly lie at the
heart of much of the general thinking about x electron systems. The first quantitative
application of FET was made by Bayliss [ 1] who calculated the #—z* transition
energies of the polyenes from the change in kinetic energy of an electron confined
to a one-dimensional box of length Q upon excitation from the highest filled to the
lowest unfilled free electron molecular orbital (FEMO). Simultaneously, Kuhn [2]
applied FET to a variety of conjugated species. Simpson also contributed to the
initial work in FET [3]. Later contributions are dominated by the admirable work
of the Chicago group which has recently been republished [4]. Ruedenberg and
Scherr [5] performed extensive FET calculations on aromatic molecules using
networks of one-dimensional paths. With the introduction of interelectronic
repulsion through the requisite coulomb and exchange integrals [6, 7] the theory
achieved its highest level of sophistication. At this level the FET is equivalent,
or superior, to the Pariser-Parr method.

* Supported in part by the Petroleum Research Fund of the Americal Chemical Society, and in
part by the National Science Foundation.
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Free electron theory is the one-dimensional path theory of molecular orbitals.
By generalization, when necessary, to networks of one-dimensional paths FET is
applicable to a large class of conjugated molecules. Nevertheless, the usage of
FET by quantum chemists has been rather limited in comparison to the LCAO-
MO method, and currently it is rarely used in discussing conjugated molecules.
The purpose of the present note is to demonstrate and emphasize the relevancy of
certain FET results to the more popular LCAO-MO theories.

The FEMO Method

The present work will apply the version of the FET suggested by Ham and
Ruedenberg [6] to the all trans-polyenes. Let
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be the Hamiltonian of the N —n-electron system. It consists of kinetic energy
operators, electron-nuclear potentials, interelectronic pair potentials, and an
average one-electron potential, V(q,), due to the ¢ core. Qy is the position of the
K™ nucleus and g, is the coordinate of the i'® electron. To proceed, the Hamiltonian
of (1) is separated into a zero-order effective Hamiltonian, H,, and an exact
remainder, H,:
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m* is the effective mass of the electron. With the usual boundary conditions the
zero-order wavefunction is just a product of free electron molecular spin-orbitals:

HoIly= Eqni(1) m5(2) - my(N), (4)
E,= Zsia
g =n? hz/;&m*QZ (5)
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n is the quantum number of the i orbital. The parameter, Q, arises from the
boundary condition, 7,{g; =0)=n(g;=Q)=0.
For the representation of H; one uses a semi-empirical potential form,
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The basic FET integrals are
H,=¢g+ z (D), Gigmi))
k

Jij= CAVEAUN GU J(])n G, (8)
K;; = (m(i) nj(i)a Gijni(])nj(])> .



FEMO Treatment of Polyenes 91

The state energies of the ground state, S,, and the first excited singlet and triplet
states, S; and T, are

N N
E(So)= zHii+ Z(Jij_Kij)’ (9)
i=1 i>j
N+1 N%{l
E(S)= Y H;+ ) (J;;— Kij)» (10)
i#=N i>j
Li#N
E(T1) = E(S1) - 2KN+ 1,N—-1" (11)

Having once chosen the value of m* and the form of the semi-empirical potential
G, (which is the same for G;; and G) no further parameters need be specified
except Q. While m* and G, need be specified but once, and are not changed in
treating different molecules, all the integrals of (8) and the resultant energies
(9—11) depend on Q, and will be studied as functions of Q.

As for G, its form is that of a finite cusp as |a —b| — 0, thereby removing the
infinity from the one-dimensional coulomb potential. At larger distances
(la—b|> 2.4 A) G, is coulombic. Undoubtedly this form for G, and the manner
of its choice [6], go very far towards reducing the role of correlation energies in
these calculations. Just as the empirical choice of the one center electronic re-
pulsion integral in Pariser-Parr theory, y,,= 11¢€V, is substantially lower than
the purely theoretical value, 16 ¢V, partially because of electronic correlation.

Results and Parametric Q Dependence

The results to be compared to the experimental transition energies are sum-
marized in Table 1.

Table 1
Molecule Q[A]l E(S)—E(S,) [eV] E(S)—E(Ty) [eV]
Ethylene 4A 7.85 (7.65) 265 (3.0
Butadiene 6 595 (5.9) 255 (2.8)
Hexatriene 8 525 (5.1) 240 (2.6)
Octatetraene 10 455 4.1) 230 —

Experimental values are in parenthesis.

In Table 2 the FEMO results of Table 1 are compared to some recent Pariser-
Parr LCAO-MO calculation [8].

Table 2
Molecule E(S;)— E(Sy) [eV] E(T,)— E(So) [eV]
LCAO-MO FEMO EXPTL. LCAO-MO FEMO EXPTL.
Butadiene 5.85 595 59 222 34 3.22
Hexatriene 5.1 525 5.1 1.84 2.85 2.58

The comparison in Table 2 is to note the very reasonable singlet-triplet
separations of the FEMO calculations and the comparatively poorer LCAO-MO
results. In general, the accuracy of the FET is as good as the semi-empirical
LCAO-MO theory. However, because of the ascendancy and generality of
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LCAO-MO theory, one may only ask if the results have any pertinence to LCAO-
MO calculations.

In this regard our interest centers on the parametric Q dependence of the energy
integrals, which is very different from the way internuclear distances appear in
the LCAO-MO theory. The singlet-triplet separations are also of great interest.
While in Egs. (8) to {11) a spin-orbital index was used, if a space orbital index is
used then an important coulomb integral in FET may be written,

1 ) .
J11 (FEMO) = N <'51n2 <—g— ql) |G, sin? (—g— q2>> .

N is the normalization factor. The integration is by two electron numerical
quadrature (appendix). The same integral occurs in the energy of each polyene.
So, having been calculated once at each of the Q values, J,(FEMO) is transfer-
able from one molecule to another. While the MO integrals are thus transferable
in FET it’s the AO integrals which are transferable in LCAO-MO theory.
J;;(FEMO) can be identified with the = coulomb integral of ethylene.

(pa(2) + pb(2))2>

p.{1)is a 2p, orbital on atom a. J;, (LCAO-MO) can be given a purely theoretical
evaluation over a particular AQ, but in an approximate calculation this is not a
very fruitful approach. Rather, analogous to the empirical choice of G,, in
J,(FEMO), it is conventional to apply the zero differential overlap (ZDO)
approximation. Empirical values for the remaining AO integrals may then be
chosen.

Fia

1
J1,{LCAO-MO) = — <(pa(1) +py(D))?

J1 (LCAO-MO-ZDO) = (7, +7,,) .

Voo = <Pell/ry,|p2> and y,,=<pZ|l/ry,lpi>. The two center integral y,, has a
parametric dependence on the internuclear distance R,,.

The theoretical relation between y,, and R,, is obtainable from integration
over, say, STOs [9]. An empirical relation seems to be preferred, especially at
small R,,. Pariser and Parr [11] suggested for R, < 2.8 A a short power series in
R,, with y,, as the leading constant term. Pullman and Schiess [12] later gave
the series,

Vog = Voo — 392327 R, + 0.69786 RZ, (12)

with y,, = 11.08 V.

The choice of parameters in the LCAO-MO-ZDO theory has been centro-
versial. Koutecky has discussed the various parameterizations for this theory, and
recently [10] has formulated a relation between the y,, on R,, dependence and
the importance of configuration interaction in Pariser-Parr calculations. Nishi-
moto [16] has recently used a dielectric model to obtain y,, as a function of R,
His values gave rather goed singlet-triplet separations in the test calculations.
Recently Hansen [17] has examined the form of y,, and y,, when “horizontal”
correlation is included. He finds the R, dependence to be very different from that
usually assumed. For example, y,, is itself a function of R,,. The last word is a
long way from being said on the subject of parameterization. The LCAO-MO
method is too important and useful to be based on a set of parameters of uncertain
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physical significance. In the following several MO integrals in FEMO and LCAO-
MO-ZDO form are compared, especially with respect to parametric dependence
on Q and R,

Figure lisaplot of J,, (FEMO)and of J;; (LCAO-MO-ZDO) in the Nishimoto
and the Schiess-Pullman y,, on R,, dependence. An initial identification of Q
and R, is necessary for a meaningful comparison. The equilibrium R, of ethylene
(1.35 A) is identified with Q =4 A in consonance with the results given in Table 1.
The agreement is satisfactory.
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Fig. 1. The nelectron coulomb integral, J;,. {{) LCAO-MO-ZDO with Schiess-Pullman parametrization
of y,, on R, (I1I) with Nishimoto parametrization. (II) Free electron Jy, (see appendix for method
of calculation)

In the case of LCAO-MO-ZDQ it results that J,; =J,, =J,,. In FET these
integrals differ slightly. Both J,, and J,, lie about 4 eV below J,, but follow the
same Q dependence. The situation is much more serious for the MO exchange
integrals, for example,

1 2
K,,(FEMO) = —N—2<sin<%q1>sin<»Q£q1> Gy sin(—ﬂQ——q2> sin(gg—qz>>, (13)
K,,(LCAO-MO-ZDO) =1 (3,. 7,0 . (14)

In a plot of K, like Fig. 1 one finds that K,,(FEMO) hardly varies at all over
this range of Q in marked contrast to the ZDO integrals. The FEMO calculations
give all the other K;;(FEMO) with such a slow variation with Q. Since the exchange
integrals give the singlet-triplet separations, and these are predicted to within
a few tenths of an eV (Tables 1 and 2) one must believe the K;;(FEMO) at least
at certain values of Q. Table 3 compares various calculated singlet-triplet separa-
tions, E(S;)— E(T}), of some non-empirical LCAO-MO calculations in the
n-electron approximation with FET.

The LCAO-MO-ZDO method [11] has empirical parameters chosen to give
exactly the experimental result of Table 3, so the comparisons of Table 2 are more
pertinent in this regard.

As a justification for little variation of K;; with Q one notes that the K;;(FEMO)
variation with Q gives the entire E(S;)— E(T}) separation as a function of @,
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Eq. (11). Clinton and Hamilton [13] have shown that on the basis of the Hellmann-
Feynman theorem the energies of §; and T, should be roughly paraliel, since the
force on the nuclei depends solely on the electronic density which in zero order is
the same for wavefunctions with the same occupied space orbitals.

Table 3. Singlet-triplet separation for ethylene (in eV)

Parr-Crawford® Murai®  Huzinaga®  FEMO® Exptl.

8.4 6.6 2.83 2.65 30

* R. G. Parr, and B. L. Crawford: J. chem. Physics 16, 526 (1948).
® T. Murai: Progr. Theoret. Phys. (Kyoto) 7, 345 (1952).

° 8. Huzinaga: J. chem. Physics 36, 453 (1962).

4 Present. Also see reference [7].

The Virial Theorem

There are at least three interpretations which one may assign to the parameter
Q in FET.

1. Qisthereal physical length of the free electron path. (i.e. @ is a trigonometric
or multiplicative function of the known bond lengths and angles in the molecule.)

2. Q is an external constraint parameter devoid of explicit physical meaning
{i.e. H; goes to infinity at g=0 and g = Q).

3. Q is just a scaling factor for all the electronic and internuclear distances
(i.e. note that g/Q appears in the wavefunctions).

Evidently a meaning like 1. has been presumed valid in the foregoing discus-
sions. However, regardless of the interpretation attached to Q, the virial theorem
takes the same form in all cases.

dE,
Te1= —%Vel—%Q dQl

T., Vo and E,, are the electronic kinetic, potential and total energy respectively.
From Egs. (4) and (5) the total kinetic energy in the state N has the FET form,
Ay/Q?. Substituting this T,, in Eq. (15), the FET form of V, is uniquely determined
to be V., = By/Q. By is the constant of integration, both A, and By are charac-

teristic of the N'* state.
The vertical excitation energy is given by the virial theorem as,

(15)

dE dE
Eyenion = Eng = By = —(Ty = T) = Q<7é‘— -0 ) : (16)
In the simplest FET the electronic energy consists solely of kinetic energy,
Ey = Ty= Ay/Q* The excitation energies are just kinetic energy differences,

Evertical = EM - EN = TM - TN > (17)

which differs in sign from the first term in Eq. (16), but substitution of Ey = 4y/Q*
and E, = A4,,/0% in (16) gives (17). Therefore the simplest FET gives E,, ;.. i
agreement with the virial theorem even though no provision is made for potential
energy changes upon excitation. (Compare to reference [14] where a restricted
form of virial theorem was used.)
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Inclusion of potential energy has given the virial form of FET energy,
Ey=Ax/Q* + By/Q, or a vertical excitation energy for the S;— S, transition,

E(Sy)~ E(So) = 44/Q% + 4B/Q . (18)

AA is known from the FET energy Eq. (5) and 4B can be determined by fitting the
singlet-singlet excitation energy at one value of Q (specifically the Q of Table 1).
Eq. (18) then gives the excitation energy at all Q. As a test of the semi-empirical
FET used in the present work one can plot Eq. (18) versus @ together with the
transition energy from Egs. (9) and (10) at a few values of Q. Figure 2 shows that
the semi-empirical FET is fairly consistent with the virial theorem. The details
of the calculations are found in the appendix.

Ethylene

Butadiene

Hexatriene

T

7 8 9 10 N 12 13
Q)

Fig. 2. Total free electron energies of excitation. Solid lines directly from the virial theorem, dots from
the semi-empirical FET

2 3 4 5 6

Appendix .

Starting from operators H,, and H, as defined in Egs. (3) and (7), the M
integrals of (8) are evaluated over the orbitals (6), at each value of Q. Expectation
values of H,, are trivially given by (5) where m*=0.75 [6]. The G, potential
was obtained as a table of numerical values by interpolation of Ham and Rueden-
berg’s revised [15] G; over the interparticle distance 0 to 2.5 A. Beyond 2.5A
the coulomb potential was used. The interelectronic integrals J;; and K;; were
found by double Simpson’s Rule integration over G;; and the FEMO charge
distributions on a 50 x 50 mesh from O to Q. Electron-nuclear integrals are found
by single integration over a stationary source of charge: Simpson’s Rule was
again used. It was found that the same potential may be used (ie. Gix=G;))
although we were prepared to weight this potential by a screening factor to give
a better representation of an effective nuclear charge. This was found to be un-
necessary nor were the results sensitive to the choice of screening.
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As Q varied, the nuclear positions retained a constant fractional relation to
Q: A(K)=Q(K)/Q, where A(K) is a constant for nucleus K in a given molecule
and Q(K) is the actual nuclear coordinate. For example, in ethylene, A(K)}=0.33,
meaning that the nuclei always remain at 1/3 and 2/3 of the free electron path
regardless of its length. If you like, this is a linear symmetric distortion of the
molecule. In general, FET dimensions are best taken from an “LCAO-MO” box,
i.e. with an extension of one bond length beyond the terminal carbon at each end.
The values of A(1) used in these calculations for the various polyenes were,
C,(0.33), C,(0.20), C4(0.143) and Cg(0.111). To obtain A(N) from these A(1),
take A(N)= N A(1), i.e. bond alternation was not considered.
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