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The semi-empirical free electron theory with inclusion of interelectronic and electron-nuclear 
molecular integrals is used to examine the spectroscopic properties of the trans-polyenes. The molecular 
integrals were calculated at many values of Q, the free electron theory length parameter. Comparisons 
are made to equivalent LCAO-MO methods, especially in regard to molecular coulomb and exchange 
integrals, singlet-triplet separations and parametric dependence. The FET virial theorem is examined. 

Mit der semiempirischen Elektronengasmethode unter Einschlug von Elektronen-Kern- und 
Zweielektronen-Wechselwirkungsgliedern werden die Anregungsenergien der Polyene untersucht. 
Die MO-Integrale werden fiir verschiedene L~ingen Q des Elektronengases bestimmt und mit den 
entsprechenden Gr613en der MO-LCAO-Methode verglichen, ebenso auch die Singulett-Triplett- 
Aufspaltungen und die Parameterabh~ingigkeiten. Das Virialtheorem wird untersucht. 

Les trans-poly6nes sont 6tudi6s par la th6orie de l'61ectron libre semi-empirique avec introduction 
des int6grales mol6culaires inter61ectroniques et 61ectron noyau. Les int6grales mol6culaires ont ~t6 
calcul6es pour de nombreuses valeurs de Q, le param6tre de longueur de la th6orie de l'61ectron libre. 
Des comparaisons sont faites avec les m6thodes LCAO MO 6quivalentes, en particulier en ce qui 
concerne les int6grales coulombiennes et d'6change, les s6parations singulet-triplet et le r61e des 
param6tres. Le th6or~me du viriel de la th6orie de l'61ectron libre est examin6. 

Introduction 

The qualitative ideas of  the free electron theory  (FET) undoubted ly  lie at the 
heart  of much of  the general thinking about  n electron systems. The first quantitative 
applicat ion of  F E T  was made  by Bayliss [1] who calculated the n - n *  transit ion 
energies of  the polyenes f rom the change in kinetic energy of  an electron confined 
to a one-dimensional  box of  length Q upon  excitation from the highest filled to the 
lowest unfilled free electron molecular  orbital (FEMO).  Simultaneously,  K u h n  [-2] 
applied F E T  to a variety of  conjugated species. Simpson also contr ibuted to the 
initial work  in F E T  [3].  Later  contr ibut ions  are domina ted  by the admirable work 
of  the Chicago group  which has recently been republished [4]. Ruedenberg  and 
Scherr [5] performed extensive F E T  calculations on aromat ic  molecules using 
networks of  one-dimensional  paths. With  the in t roduct ion of  interelectronic 
repulsion th rough  the requisite cou lomb  and exchange integrals [6, 7] the theory  
achieved its highest level of  sophistication. At this level the F E T  is equivalent, 
or  superior, to the Par iser -Parr  method.  

* Supported in part by the Petroleum Research Fund of the Americal Chemical Society, and in 
part by the National Science Foundation. 
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Free electron theory is the one-dimensional path theory of molecular orbitals. 
By generalization, when necessary, to networks of one-dimensional paths FET is 
applicable to a large class of conjugated molecules. Nevertheless, the usage of 
FET by quantum chemists has been rather limited in comparison to the LCAO- 
MO method, and currently it is rarely used in discussing conjugated molecules. 
The purpose of the present note is to demonstrate and emphasize the relevancy of 
certain FET results to the more popular LCAO-MO theories. 

The FEMO Method 

The present work will apply the version of the FET suggested by Ham and 
Ruedenberg [6] to the all trans-polyenes. Let 

N h 2  N e 2  N ~72 N 

E 
,= t [qi - QK] + ~ ]qi -- qj[ 

+ V(qi) (1) 
i =  " " i = t  

be the Hamiltonian of the N-n-electron system. It consists of kinetic energy 
operators, electron-nuclear potentials, interelectronic pair potentials, and an 
average one-electron potential, V(qi), due to the a core. QK is the position of the 
K th nucleus and q i is the coordinate of the i th electron. To proceed, the Hamiltonian 
of (1) is separated into a zero-order effective Hamiltonian, Ha, and an exact 
remainder, H1 : 

H = Ho + H1, (2) 
N h2 

H° = ~ 2m* V/2; (3) 
i = 1  

m* is the effective mass of the electron. With the usual boundary conditions the 
zero-order wavefunction is just a product of free electron molecular spin-orbitals: 

H0 Ho =- E0 rq (1) rc z (2)... nN(N), (4) 

E0= ~ ei , 
i 

ei = la2 hZ/8m , Q2, (5) 

[ 2 "~ . [ n~ ) "  f~(i) 
= s'nT  (6) 

n is the quantum number of the i th orbital. The parameter, Q, arises from the 
boundary condition, rci(qi = O) = ~ i (q i  = Q )  = 0 .  

For the representation of H~ one uses a semi-empirical potential form, 
N N 

H1 = ~ ~ G,r ( lq , -  Qr[) + ~ Gu(lq~- qjl). (7) 
K i = 1  i > j  

The basic FET integrals are 

Hi, = r. i + ~ (Tzi(i), GiKTzi(i)), 
k 

Jij = Qzi(i) 7ri(i), GUnj(j) rcj(]) ) , (8) 

K u = Qh(i) nj(i), GijTzi(]) nj(])) .  
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The state energies of the ground state, So, and the first excited singlet and triplet 
states, $1 and 7"1, are 

N N 

E(So) = 2 Hu + Z (Jij - Kij), (9) 
i = l  i>j  
N+I N+I 

E(S1) = ~ Hu + ~ (J , j -  K,j), (10) 
iCN i>j  

i,jC N 

E(T1) = E(SO - 2KN+I,N-1 • (11) 

Having once chosen the value of m* and the form of the semi-empirical potential 
G.b (which is the same for Gij and G~K ) no further parameters need be specified 
except Q. While m* and G.b need be specified but once, and are not changed in 
treating different molecules, all the integrals of (8) and the resultant energies 
(9--11) depend on Q, and will be studied as functions of Q. 

As for Gap, its form is that of a finite cusp as la-b[-~0, thereby removing the 
infinity from the one-dimensional coulomb potential. At larger distances 
([a - bl > 2.4 •) G~b is coulombic. Undoubtedly this form for G,b and the manner 
of its choice [6], go very far towards reducing the role of correlation energies in 
these calculations. Just as the empirical choice of the one center electronic re- 
pulsion integral in Pariser-Parr theory, 7p, = 11 eV, is substantially lower than 
the purely theoretical value, 16 eV, partially because of electronic correlation. 

Results and Parametric Q Dependence 
The results to be compared to the experimental transition energies are sum- 

marized in Table 1. 
Table 1 

Molecule Q [/~] E(S O -  E(So) [eV] E(Sa) -  E(Tx) [eV] 

Ethylene 4A 7.85 (7.65) 2.65 (3.0) 
Butadiene 6 5.95 (5.9) 2.55 (2.8) 
Hexatriene 8 5.25 (5.1) 2.40 (2.6) 
Octatetraene 10 4.55 (4.1) 2.30 - -  

Experimental values are in parenthesis. 

In Table 2 the FEMO results of Table 1 are compared to some recent Pariser- 
Parr LCAO-MO calculation [8]. 

Table 2 

Molecule E(S1) - E(So) leVI E(TO - E(So) [eV] 

LCAO-MO F E M O  EXPTL. LCAO-MO F E M O  EXPTL. 

Butadiene 5.85 5.95 5.9 2.22 3.4 3.22 
Hexatriene 5.1 5.25 5.1 1.84 2.85 2.58 

The comparison in Table 2 is to note the very reasonable singlet-triplet 
separations of the FEMO calculations and the comparatively poorer LCAO-MO 
results. In general, the accuracy of the FET is as good as the semi-empirical 
LCAO-MO theory. However, because of the ascendancy and generality of 
7* 
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LCAO-MO theory, one may only ask if the results have any pertinence to LCAO- 
MO calculations. 

In this regard our interest centers on the parametric Q dependence of the energy 
integrals, which is very different from the way internuclear distances appear in 
the LCAO-MO theory. The singlet-triplet separations are also of great interest. 
While in Eqs. (8) to (11) a spin-orbital index was used, if a space orbital index is 
used then an important coulomb integral in FET may be written, 

J l l (FEMO)= N-- -F(s in2(Qql ) lGa2fs in2(Qq2)) .  

N is the normalization factor. The integration is by two electron numerical 
quadrature (appendix). The same integral occurs in the energy of each polyene. 
So, having been calculated once at each of the Q values, Jll(FEMO) is transfer- 
able from one molecule to another. While the MO integrals are thus transferable 
in FET it's the AO integrals which are transferable in LCAO-MO theory. 
Jll(FEMO) can be identified with the n coulomb integral of ethylene. 

J 1 1 ( L C A O - M O ) = ~  pa(1)+pb(1)) z 1 (pa(2)+pb(2)) 

pa(1) is a 2p~ orbital on atom a. J~(LCAO-MO) can be given a purely theoretical 
evaluation over a particular AO, but in an approximate calculation this is not a 
very fruitful approach. Rather, analogous to the empirical choice of G12 in 
JI~(FEMO), it is conventional to apply the zero differential overlap (ZDO) 
approximation. Empirical values for the remaining AO integrals may then be 
chosen. 

J~ t(LCAO-MO-ZDO) = ½ (7pp + 7pq), 

7pp = (p2a t l/ri2lp2) and olpq = @2 I1/r~2[Pb 25' The two center integral 7pq has a 
parametric dependence on the internuclear distance R,b. 

The theoretical relation between •pq and R~b is obtainable from integration 
over, say, STOs [9]. An empirical relation seems to be preferred, especially at 
small Rab. Pariser and Parr [11] suggested for R,b < 2.8/k a short power series in 
R~b with 7pp as the leading constant term. Pullman and Schiess [12] later gave 
the series, 

]; pq = ]) pp -- 3.92327 Rab -Jr" 0.69786 R2b (12) 

with ypp = 11.08 eV. 
The choice of parameters in the LCAO-MO-ZDO theory has been centro- 

versial. Kouteck3~ has discussed the various parameterizations for this theory, and 
recently [10] has formulated a relation between the 7pq o n  Rab dependence and 
the importance of configuration interaction in Pariser-Parr calculations. Nishi- 
moto [16] has recently used a dielectric model to obtain 7pq as a function of Rab. 
His values gave rather goed singlet-triplet separations in the test calculations. 
Recently Hansen [17] has examined the form of 7pp and 7pq when "horizontal" 
correlation is included. He finds the Rab dependence to be very different from that 
usually assumed. For example, ])pp is itself a function of R,b. The last word is a 
long way from being said on the subject of parameterization. The LCAO-MO 
method is too important and useful to be based on a set of parameters of uncertain 
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physical significance. In the following several MO integrals in FEMO and LCAO- 
MO-ZDO form are compared, especially with respect to parametric dependence 
on Q and Ra~. 

Figure 1 is a plot of J11(FEMO) and of J 11 (LCAO-MO-ZDO) in the Nishimoto 
and the Schiess-Pullman 7pq on Rab dependence. An initial identification of Q 
and R,b is necessary for a meaningful comparison. The equilibrium R,b of ethylene 
(1.35 A) is identified with Q = 4 A in consonance with the results given in Table 1. 
The agreement is satisfactory. 

11. 
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9. 
eV 
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11o 2'.o 3'o 4'0 slo 
Rob{~) 

Fig. 1. The ~ electron coulomb integral, dn. (1) LCAO-MO-ZDO with Schiess-Pullman parametrization 
of ?vq on R,b, (III) with Nishimoto parametrization. (11) Free electron dn (see appendix for method 

of calculation) 

In the case of LCAO-MO-ZDO it results that J l l  = J12 = J22" In FET these 
integrals differ slightly. Both Jlz and J22 lie about ½ eV below JH, but follow the 
same Q dependence. The situation is much more serious for the MO exchange 
integrals, for example, 

K12(FEMO)= ~ -  sin ql sin qt ]G12] sin q2 sm q2 , (13) 

K12 (LCAO-MO-ZDO) = ½ (Tpp - 7p~). (14) 

In a plot of K12 like Fig. l one finds that K12(FEMO) hardly varies at all over 
this range of Q in marked contrast to the ZDO integrals. The FEMO calculations 
give all the other K u (FEMO) with such a slow variation with Q. Since the exchange 
integrals give the singlet-triplet separations, and these are predicted to within 
a few tenths of an eV (Tables 1 and 2) one must believe the K u (FEMO) at least 
at certain values of Q. Table 3 compares various calculated singlet-triplet separa- 
tions, E(SO--E(TD, of some non-empirical LCAO-MO calculations in the 
~-electron approximation with FET. 

The LCAO-MO-ZDO method [11] has empirical parameters chosen to give 
exactly the experimental result of Table 3, so the comparisons of Table 2 are more 
pertinent in this regard. 

As a justification for little variation ofK u with Q one notes that the K u (FEMO) 
variation with Q gives the entire E(S D -E(T  D separation as a function of Q, 
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Eq. (11). Clinton and Hamilton [13] have shown that on the basis of the Hellmann- 
Feynman theorem the energies of S~ and Tt should be roughly parallel, since the 
force on the nuclei depends solely on the electronic density which in zero order is 
the same for wavefunctions with the same occupied space orbitals. 

Table 3. Sinotet-triptet separation for ethylene (in eV) 

Parr-Crawford ~ Muraib HuzinagaC FEMO d Exptl. 

8.4 6.6 2.83 2.65 3.0 

" R. G. Parr, and B. L. Crawford: J. chem. Physics t6, 526 (1948). 
b T. Murai: Progr. Theoret. Phys. (Kyoto) 7, 345 (1952). 
° S. Huzinaga: J. chem. Physics 36, 453 (1962). 
a Present. Also see reference [7]. 

The Virial Theorem 

There are at least three interpretations which one may assign to the parameter 
Q in FET. 

1. Q is the real physical length of the free electron path. (i.e. Q is a trigonometric 
or multiplicative function of the known bond lengths and angles in the molecule.) 

2. Q is an external constraint parameter devoid of explicit physical meaning 
(i.e. H1 goes to infinity at q = 0 and q = Q). 

3. Q is just a scaling factor for all the electronic and internuclear distances 
(i.e. note that q/Q appears in the wavefunctions). 

Evidently a meaning like 1. has been presumed valid in the foregoing discus- 
sions. However, regardless of the interpretation attached to Q, the virial theorem 
takes the same form in all cases. 

dEel 
T e l = - ½ V e l - l Q  dQ (15) 

Tel, Vel and Eel are the electronic kinetic, potential and total energy respectively. 
From Eqs. (4) and (5) the total kinetic energy in the state N has the FET form, 
AN/Q 2. Substituting this Tel in Eq. (15), the FET form of Vel is uniquely determined 
to be V~ = BN/Q. BN is the constant of integration, both A N and B N are charac- 
teristic of the N th state. 

The vertical excitation energy is given by the virial theorem as, 

Evertical = E M - E  N - ~ -  --(TM -- T N ) -  Q dQ J" 

In the simplest FET the electronic energy consists solely of kinetic energy, 
E n = T N = AN/Q 2. The excitation energies are just kinetic energy differences, 

Evertieal = EM -- EN = TM -- TN , (17) 

which differs in sign from the first term in Eq. (16), but substitution ofEN = AN/Q z 
and E M = AM/Q z in (16) gives (17). Therefore the simplest FET gives Evmlc,I in 
agreement with the virial theorem even though no provision is made for potential 
energy changes upon excitation. (Compare to reference [14] where a restricted 
form of virial theorem was used.) 
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Inclusion of potential energy has given the virial form of FET energy, 
EN = AN/Q 2 + BN/Q, or a vertical excitation energy for the So ~ St transition, 

E(SO - E(So) = A A / Q  2 + AB/Q . (18) 

AA is known from the FET  energy Eq. (5) and AB can be determined by fitting the 
singlet-singlet excitation energy at one value of Q (specifically the Q of Table 1). 
Eq. (18) then gives the excitation energy at all Q. As a test of the semi-empirical 
FET used in the present work one can plot Eq. (18) versus Q together with the 
transition energy from Eqs. (9) and (10) at a few values of Q. Figure 2 shows that 
the semi-empirical FET is fairly consistent with the virial theorem. The details 
of the calculations are found in the appendix. 
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Fig. 2. Total free electron energies of excitation. Solid lines directly from the virial theorem, dots from 

the semi-empirical FET 

Appendix  

Starting from operators H 0 and H 1 as defined in Eqs. (3) and (7), the MO 
integrals of (8) are evaluated over the orbitals (6), at each value of Q. Expectation 
values of H 0 are trivially given by (5) where m* = 0.75 [6]. The G,b potential 
was obtained as a table of numerical values by interpolation of Ham and Rueden- 
berg's revised [153 Gj over the interparticle distance 0 to 2.5/~. Beyond 2.5 ,& 
the coulomb potential was used. The interelectronic integrals Jij and Kij were 
found by double Simpson's Rule integration over Gij and the F EMO  charge 
distributions on a 50 × 50 mesh from 0 to Q. Electron-nuclear integrals are found 
by single integration over a stationary source of charge: Simpson's Rule was 
again used. It was found that the same potential may be used (i.e. GiK = G~j) 
although we were prepared to weight this potential by a screening factor to give 
a better representation of an effective nuclear charge. This was found to be un- 
necessary nor were the results sensitive to the choice of screening. 



96 S.R. La Paglia: FEMO Treatment of Polyenes 

As Q varied,  the nuc lea r  pos i t ions  r e t a ined  a cons t an t  f rac t ional  re la t ion  to 
Q : A(K) = Q(K)/Q, where A(K) is a cons tan t  for nucleus K in a given molecule  
and Q(K) is the ac tua l  nuc lear  coord ina te .  F o r  example ,  in ethylene,  A(K) = 0.33, 
mean ing  tha t  the nuclei  a lways  r e m a i n  at  1/3 and  2/3 of  the free e lec t ron pa th  
regardless  of  its length. I f  you  like, this is a l inear  symmet r i c  d i s to r t ion  of  the 
molecule.  In  general ,  F E T  d imens ions  are  best  t aken  f rom an " L C A O - M O "  box, 
i.e. with an  extens ion of  one  b o n d  length  b e y o n d  the t e rmina l  c a rbon  at  each end. 
The values of  A(1) used in these ca lcu la t ions  for the var ious  polyenes  were, 
C2(0.33), C4(0.20), C6(0.143 ) and  Cs(0.111 ). To ob ta in  A(N) f rom these A(1), 
t ake  A(N)= N A(1), i.e. b o n d  a l t e rna t ion  was no t  considered.  
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